Kajian: Isolasi Sel Punca Mesenkim dari Wharton Jelly Tali Pusat Manusia
Abstract
Full Text:
PDFReferences
Sun Q, Zhang Z, Sun Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis. 2014;1(1):113-119. doi:10.1016/j.gendis.2014.07.003
Wei X, Yang X, Han Z-P, Qu F-F, Shao L, Shi Y-F. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34:747-754. doi:10.1038/aps.2013.50
Andrzejewska A, Lukomska B, Janowski M. Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells. 2019;37(7):855-864. doi:10.1002/STEM.3016
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35:191. doi:10.1042/BSR20150025
Zolfaghar M, Mirzaeian L, Beiki B, et al. Wharton’s jelly derived mesenchymal stem cells differentiate into oocyte like cells in vitro by follicular fluid and cumulus cells conditioned medium. Heliyon. 2020;6(10):1-11. doi:10.1016/J.HELIYON.2020.E04992
Kaveh K, Ibrahim R, Abu Bakar MZ, Ibrahim T a. Mesenchymal Stem Cells, Osteogenic Lineage and Bone Tissue Engineering: A Review. J Anim Vet Adv. 2011;10(17):2317-2330. doi:10.3923/javaa.2011.2317.2330
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(68):1-22. doi:10.1186/s13287-019-1165-5
Rantam F. Stem Cell Exploration Method of Isolation and Culture. 1st Edition. Airlangga University Press; 2009.
Balogh P, Engelmann P. Transdifferentiation and Regenerative Medicine. (Balogh P, Peter E, Bognar R, eds.). University of Pecs; 2011. http://www.tankonyvtar.hu/en/tartalom/tamop425/0011_1A_Transzdifferenciation_en_book/ch01s06.html
Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: Perspectives and future endeavors. Int J Biochem Cell Biol. 2014;46:90-102. doi:10.1016/j.biocel.2013.11.006
Dominici M, Blanc K Le, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells . The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.
Van Pham P, Truong NC, Le PTB, et al. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell Tissue Bank. 2016;17(2):289-302. doi:10.1007/s10561-015-9541-6
Stefańska K, Ożegowska K, Hutchings G, et al. Human Wharton’s Jelly—cellular specificity, stemness potency, animal models, and current application in human clinical trials. J Clin Med. 2020;9:1-22. doi:10.3390/jcm9041102
Laverdet B, Micallef L, Lebreton C, et al. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathol Biol. 2014;62(2):108-117. doi:10.1016/j.patbio.2014.01.002
Moreira A, Kahlenberg S, Hornsby P. Therapeutic potential of mesenchymal stem cells for diabetes. J Mol Endocrinol. 2017;59(3):R109-R120. doi:10.1530/JME-17-0117
Habibollah S, Forraz N, McGuckin C. Application of Umbilical Cord and Cord Blood as Alternative Modes for Liver Therapy. In: Bhattacharya N, Stubblefield PG, eds. Regenerative Medicine: Using Non-Fetal Sources of Stem Cells. Springer-Verlag; 2015:1-285. doi:10.1007/978-1-4471-6542-2
Al-Saqi SH, Saliem M, Asikainen S, et al. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells. Cytotherapy. 2014;16(7):915-926. doi:10.1016/j.jcyt.2014.02.006
Pieri L, Urbani S, Mazzanti B, et al. Human mesenchymal stromal cells preserve their stem features better when cultured in the Dulbecco’s modifi ed Eagle medium. Cytotherapy. 2011;13(5):539-548. doi:10.3109/14653249.2010.542459
Vito A Di, Giudice A, Chiarella E, Malara N, Bennardo F, Fortunato L. In Vitro Long-Term Expansion and High Osteogenic Potential of Periodontal Ligament Stem Cells: More Than a Mirage. Cell Transplant. 2019;28(1):129-139. doi:10.1177/0963689718807680
Rinendyaputri R, Dani F, Polim A, Boediono A. Vitrification Method Efficacy of Mesenchymal Stem Cells (MSCs) Derived from Wharton’s Jelly. J Biotek Medisiana Indones. 2011;6(1):9-19. Accessed February 10, 2022. https://ejournal2.litbang.kemkes.go.id/index.php/jbmi/article/view/1681/884
Azandeh S, Orazizadeh M, Hashemitabar M, et al. Mixed enzymatic-explant protocol for isolation of mesenchymal stem cells from Wharton’s jelly and encapsulation in 3D culture system. J Biomed Sci Eng. 2012;5:580-586. doi:10.4236/jbise.2012.510071
Varaa N, Azandeh S, Khodabandeh Z, Gharravi AM. Wharton’s Jelly mesenchymal stem cell: Various protocols for isolation and differentiation of hepatocyte-like cells; narrative review. Iran J Med Sci. 2019;44(6):437-448. doi:10.30476/ijms.2019.44952
Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu Plesu M. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res Ther. 2013;4(81):1-16. doi:10.1186/scrt232
Yoon HH, Jung BY, Seo YK, Song KY, Park JK. In vitro hepatic differentiation of umbilical cord-derived mesenchymal stem cell. Process Biochem. 2010;45:1857-1864. doi:10.1016/j.procbio.2010.06.009
Chen Z, Kuang Q, Lao X-J, Yang J, Huang W, Zhou D. Differentiation of UC-MSCs into hepatocyte-like cells in partially hepatectomized model rats. Exp Ther Med. 2016;12:1775-1779. Accessed February 24, 2022. https://pdfs.semanticscholar.org/1aa8/f379db6e5692bd200759c5a0f36bd0d820bf.pdf
Taran R, Mamidi MK, Singh G, et al. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci. 2014;39:157-169.
Rizal R, Syaidah R, Evelyn E, Hafizh AM, Frederich J. Wharton’s Jelly Mesenchymal Stem Cells: Differentiation Capacity Showing its Role in Bone Tissue Engineering. Int J Technol. 2020;11(5):1005-1014. doi:10.14716/ijtech.v11i5.4309
Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133:473-485. doi:10.1007/s10549-011-1774-x
Zhang W, Liu XC, Yang L, et al. Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis. 2013;24(7):549-558. doi:10.1097/MCA.0b013e3283640f00
Nascimento DS, Mosqueira D, Sousa LM, et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther. 2014;5(5):1-14. doi:10.1186/scrt394
Sabapathy V, Sundaram B, Vm S, Mankuzhy P, Kumar S. Human wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One. 2014;9(4):1-10. doi:10.1371/journal.pone.0093726
Krupa P, Vackova I, Ruzicka J, et al. The effect of human mesenchymal stem cells derived from Wharton’s Jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. Int J Mol Sci. 2018;19:1-18. doi:10.3390/ijms19051503
Chudickova M, Vackova I, Urdzikova LM, et al. The effect of wharton jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int J Mol Sci. 2019;20:1-19. doi:10.3390/ijms20184516
Refbacks
- There are currently no refbacks.
Sekretariat SENSORIK :
Ruang Jurnal Lantai 2, Gedung Cipto Mangunkusumo, Fakultas Kedokteran, UPN Veteran Jakarta, Indonesia.
Copyright © some right reserved Seminar Nasional Riset Kedokteran (SENSORIK).
This work is licensed under a Creative Commons Attribution 3.0 International License.