HUBUNGAN PROTEIN KLOTHO (α-KLOTHO) DENGAN STADIUM PENYAKIT GAGAL GINJAL KRONIK SEBUAH SYSTEMATIC REVIEW

Ahmad Syarif Shahab, Tuty Rizkianti, Ryan herardi

Abstract


Latar Belakang : Gagal Ginjal Kronik merupakan suatu penyakit degeneratif yang terjadi pada organ ginjal, dimana ginjal gagal dalam menjalankan fungsi filtrasi dan reabsorpsi cairan tubuh, yang ditandai dengan penurunan nilai LFG, proteinuria,  dan peningkatan urea dan kreatinin pada sedimen urin. Beberapa penelitian telah membahas mengenai α-klotho dan perannya pada mekanisme sistem organ seperti genitourinaria dan kardiovaskular. Pada beberapa penelitian tersebut, telah ditemukan beberapa bukti mengenai peran α-klotho dalam PGK dan progresinya, serta peluang α-klotho untuk menjadi biomarker PGK. Penelitian ini bertujuan untuk mengumpulkan penemuan-penemuan pada penelitian mengenai hubungan antara α-klotho dan stadium PGK,  serta mengulas mengenai α-klotho dan perannya pada stadium PGK. Metode: Systematic Review dengan melakukan pencarian literatur menggunakan pangkalan data PubMed dan Science Direct. Literatur yang membahas mengenai PGK, α-klotho, dan asosiasi. Hasil: Terdapat 4 penelitian yang memaparkan gambaran kadar α-klotho pada setiap stadium PGK, dengan penemuan terdapatnya penurunan kadar α-klotho seiring dengan peningkatan stadium PGK. Didapatkan 3 penelitian yang menemukan bahwa terdapat hubungan bermakna antara α-klotho dengan stadium PGK dan eLFG. Kesimpulan: Terdapat hubungan yang bermakna antara α-klotho dengan stadium PGK.

  


Full Text:

PDF

References


Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83(6):1010–6.

Barker SL, Pastor J, Carranza D, Quiones H, Griffith C, Goetz R, et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. 2015;30(2):223–33.

Benghanem Gharbi M, Elseviers M, Zamd M, Belghiti Alaoui A, Benahadi N, Trabelssi EH, et al. Chronic kidney disease, hypertension, diabetes, and obesity in the adult population of Morocco: how to avoid “over”- and “under”-diagnosis of CKD. Kidney Int. 2016;89(6):1363–71.

Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A. 2008;105(28):9805–10.

Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41(1):1–12.

Disease K, Menon V, Shlipak MG, Wang X, Coresh J, Greene T. Annals of Internal Medicine Article Cystatin C as a Risk Factor for Outcomes in Chronic. Ann Intern Med. 2007;19–28.

Eloot S, Schepers E, Barreto D V., Barreto FC, Liabeuf S, van Biesen W, et al. Estimated glomerular filtration rate is a poor predictor of concentration for a broad range of uremic toxins. Clin J Am Soc Nephrol. 2011;6(6):1266–73.

Fotheringham J, Campbell MJ, Fogarty DG, El Nahas M, Ellam T. Estimated albumin excretion rate versus urine albumin-creatinine ratio for the estimation of measured albumin excretion rate: Derivation and validation of an estimated albumin excretion rate equation. Am J Kidney Dis [Internet]. 2014;63(3):405–14. Available from: http://dx.doi.org/10.1053/j.ajkd.2013.08.009

Garasto S, Fusco S, Corica F, Rosignuolo M, Marino A, Montesanto A, et al. Estimating glomerular filtration rate in older people. Biomed Res Int. 2014;2014.

Glassock RJ. Evaluation of proteinuria redux. Kidney Int [Internet]. 2016;90(5):938–40. Available from: http://dx.doi.org/10.1016/j.kint.2016.07.044

Gupta S, Rajiah P, Middlebrooks EH, Baruah D, Carter BW, Burton KR, et al. Systematic Review of the Literature: Best Practices. Acad Radiol. 2018;25(11):1481–90.

Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat Rev Nephrol [Internet]. 2012;8(5):293–300. Available from: http://dx.doi.org/10.1038/nrneph.2012.19

Hu MC, Kuro-o M, Moe OW. Renal and Extrarenal Actions of Klotho. Semin Nephrol. 2013;33(2):118–29.

Hu MC, Kuro-O M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63.

Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.

Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22(1):124–36.

Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast Growth Factor 23 and Klotho: Physiology and Pathophysiology of an Endocrine Network of Mineral Metabolism. Annu Rev Physiol. 2013;75(1):503–33.

Imai E, Horio M, Watanabe T, Iseki K, Yamagata K, Hara S, et al. Prevalence of chronic kidney disease in the Japanese general population. Clin Exp Nephrol. 2009;13(6):621–30.

Inker LA, Levey AS, Pandya K, Stoycheff N, Okparavero A, Greene T. Early change in proteinuria as a surrogate end point for kidney disease progression: An individual patient meta-analysis. Am J Kidney Dis [Internet]. 2014;64(1):74–85. Available from: http://dx.doi.org/10.1053/j.ajkd.2014.02.020

Jameson JL, Loscalzo J. Harrison’s Nephrology Acid-Base Disorders. McGraw Hill Education; 2013.

JBI. Critical Appraisal Tools - JBI. Joanna Briggs Institute. 2017.

KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. 2012; Available from: www.kdigo.org

Kim HR, Nam BY, Kim DW, Kang MW, Han JH, Lee MJ, et al. Circulating α-klotho levels in CKD and relationship to progression. Am J Kidney Dis. 2013;61(6):899–909.

Kuro-o M, Moe OW. FGF23-αKlotho as a paradigm for a kidney-bone network. Bone. 2017;100:4–18.

Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. 2006;281(10):6120–3.

Lamb EJ, Stevens PE. Estimating and measuring glomerular filtration rate: Methods of measurement and markers for estimation. Curr Opin Nephrol Hypertens. 2014;23(3):258–66.

Li J, An C, Kang L, Mitch WE, Wang Y. Recent Advances in Magnetic Resonance Imaging Assessment of Renal Fibrosis. Adv Chronic Kidney Dis [Internet]. 2017;24(3):150–3. Available from: http://dx.doi.org/10.1053/j.ackd.2017.03.005

Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, et al. Α-Klotho Expression in Human Tissues. J Clin Endocrinol Metab. 2015;100(10):E1308–18.

Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-O M, Nabeshima YI. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242(3):626–30.

Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: A collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol [Internet]. 2015;3(7):514–25. Available from: http://dx.doi.org/10.1016/S2213-8587(15)00040-6

Ming Chang Hu, Makoto Kuro-o, Moe OW, Kuro-o M. Endocrine Fgfs and Klothos. Chapter 9: Secreted Klotho and Chronic Kidney Disease. 2012;126–57.

Morton RL, Schlackow I, Mihaylova B, Staplin ND, Gray A, Cass A. The impact of social disadvantage in moderate-to-severe chronic kidney disease: An equity-focused systematic review. Nephrol Dial Transplant. 2016;31(1):46–56.

Murphy D, McCulloch CE, Lin F, Banerjee T, Bragg-Gresham JL, Eberhardt MS, et al. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med. 2016;165(7):473–81.

Neyra JA, Hu MC. αKlotho and Chronic Kidney Disease. Vitam Horm. 2016;101:257–310.

Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone [Internet]. 2017;100:41–9. Available from: http://dx.doi.org/10.1016/j.bone.2017.01.017

Panesso MC, Shi M, Cho HJ, Paek J, Ye J, Moe OW, et al. Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int [Internet]. 2014;85(4):855–70. Available from: http://dx.doi.org/10.1038/ki.2013.489

Pasala S, Carmody JB. How to use... serum creatinine, cystatin C and GFR. Arch Dis Child Educ Pract Ed. 2017;102(1):37–43.

Pati D, Lorusso LN. How to Write a Systematic Review of the Literature. Heal Environ Res Des J. 2018;11(1):15–30.

Pedersen L, Pedersen SM, Brasen CL, Rasmussen LM. Soluble serum Klotho levels in healthy subjects. Comparison of two different immunoassays. Clin Biochem [Internet]. 2013;46(12):1079–83. Available from: http://dx.doi.org/10.1016/j.clinbiochem.2013.05.046

Perazella MA. The Urine Sediment as a Biomarker of Kidney Disease. Am J Kidney Dis [Internet]. 2015;66(5):748–55. Available from: http://dx.doi.org/10.1053/j.ajkd.2015.02.342

Qian J, Zhong J, Yan M, Cheng P, Shi H, Hao C, et al. Circulating α-Klotho is Related to Plasma Aldosterone and Its Follow-Up Change Predicts CKD Progression. Kidney Blood Press Res. 2018;43(3):836–46.

Remer EM, Papanicolaou N, Casalino DD, Bishoff JT, Blaufox MD, Coursey CA, et al. ACR appropriateness criteria® on renal failure. Am J Med [Internet]. 2014;127(11):1041-1048.e1. Available from: http://dx.doi.org/10.1016/j.amjmed.2014.05.014

Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, et al. Chronic kidney disease. Nat Rev Dis Prim. 2017;3.

Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, et al. Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PLoS One. 2014;9(1).

Sastre C, Rubio-Navarro A, Buendiá I, Goḿez-Guerrero C, Blanco J, Mas S, et al. Hyperlipidemia-associated renal damage decreases Klotho expression in kidneys from ApoE knockout mice. PLoS One. 2013;8(12):1–13.

Scholze A, Liu Y, Pedersen L, Xia S, Roth HJ, Hocher B, et al. Soluble α-Klotho and its relation to kidney function and fibroblast growth factor-23. J Clin Endocrinol Metab. 2014;99(5):1–8.

Seiler S, Wen M, Roth HJ, Fehrenz M, Flügge F, Herath E, et al. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013;83(1):121–8.

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols ) 2015 checklist : recommended items to address in a systematic review protocol *. Bmj. 2015;

Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M, Kagawa T, et al. Serum levels of soluble secreted a-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012;16(5):722–9.

Small DM, Bennett NC, Roy S, Gabrielli BG, Johnson DW, Gobe GC. Oxidative stress and cell senescence combine to cause maximal renal tubular epithelial cell dysfunction and loss in an in vitro model of kidney disease. Nephron - Exp Nephrol. 2013;122(3–4):123–30.

Stevens PE, O’Donoghue DJ, De Lusignan S, Van Vlymen J, Klebe B, Middleton R, et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 2007;72(1):92–9.

Sugano Y, Lardelli M. Identification and expression analysis of the zebrafish orthologue of Klotho. Dev Genes Evol. 2011;221(3):179–86.

Sugiura H, Yoshida T, Shiohira S, Kohei J, Mitobe M, Kurosu H, et al. Reduced klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol - Ren Physiol. 2012;302(10):1252–65.

Tsuchiya K, Nagano N, Nitta K. Klotho/FGF23 axis in CKD. Contrib Nephrol. 2015;185:56–65.

Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.

Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19(5):863–70.

Verbeke F, Van Biesen W, Vanholder R. The role of collagen metabolism in CKD-associated arterial senescence: Underestimated and underappreciated. Nephrol Dial Transplant. 2011;26(9):2726–8.

Webster AC, Nagler E V., Morton RL, Masson P. Chronic Kidney Disease. Lancet [Internet]. 2017;389(10075):1238–52. Available from: http://dx.doi.org/10.1016/S0140-6736(16)32064-5

Xu Y, Sun Z. Molecular basis of klotho: From gene to function in aging. Endocr Rev. 2015;36(2):174–93.

Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun [Internet]. 2010;398(3):513–8. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.06.110

Zhong J, Yang HC, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol - Ren Physiol. 2017;312(3):F375–84.

Zou D, Wu W, He Y, Ma S, Gao J. The role of klotho in chronic kidney disease. BMC Nephrol. 2018;19(1):1–12.


Refbacks

  • There are currently no refbacks.


Sekretariat SENSORIK :

Ruang Jurnal Lantai 2, Gedung Cipto Mangunkusumo, Fakultas Kedokteran, UPN Veteran Jakarta, Indonesia.

Copyright © some right reserved Seminar Nasional Riset Kedokteran (SENSORIK).

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 International License.