Kajian: Alternatif Pengganti Trypsin pada Kultur Sel Punca Mesenkim

Ariyani Noviantari, Tati Febrianti

Abstract


Saat ini, sel punca memiliki potensi sebagai sel terapi pada berbagai penyakit degeneratif. Potensi tersebut harus diimbangi dengan ketersediaan sel punca sebagai sel terapi. Dalam transplantasi sel punca kepada pasien, sel punca harus memenuhi standar Good Manufacturing Practice (GMP) dan regulasi dari Badan Pengawas Obat dan Makanan (BPOM). Sebelum diberikan ke pasien, sel punca mesenkim (SPM) dikultur menggunakan medium kultur ditambahkan suplemen tertentu agar mencapai jumlah sel yang dibutuhkan. Pada ekspansi dan propagasi SPM, perlu dilakukan pasase atau subkultur menggunakan suatu enzim. Enzim yang biasanya digunakan adalah trypsin, namun bahan ini masih mengandung materi hewan. Oleh karena itu diperlukan adanya alternatif suplemen pengganti trypsin yang aman digunakan dalam kultur SPM untuk terapi sel punca. Tulisan ini menguraikan tentang alternatif bahan pengganti trypsin sebagai suplemen dalam kultur SPM yang bebas dari materi hewan. Tulisan ini berupa review literatur yang didapatkan melalui penelusuran pustaka yang didapatkan dari internet. Papain, TrypLE Select, TrypLE Express, dan TrypZean dapat digunakan sebagai pengganti trypsin pada kultur SPM.


Full Text:

PDF

References


Giancola R, Bonfini T, Iacone A. Cell therapy: cGMP facilities and manufacturing. Muscles, Ligament Tendons J. 2012;2(3):243-247.

Wei X, Yang X, Han Z-P, Qu F-F, Shao L, Shi Y-F. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34:747-754. doi:10.1038/aps.2013.50

Tavakolinejad S, Khosravi M, Mashkani B, et al. The effect of Human platelet-rich plasma on adipose-derived stem cell proliferation and osteogenic differentiation. Iran Biomed J. 2014;18(3):150-156. doi:10.6091/ibj.1301.2014

Oikonomopoulos A, van Deen WK, Manansala A-R, et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep. 2015;5:16570. doi:10.1038/srep16570

Sagaradze G, Grigorieva O, Nimiritsky P, et al. Conditioned medium from human mesenchymal stromal cells: Towards the clinical translation. Int J Mol Sci. 2019;20(7):1-16. doi:10.3390/ijms20071656

Fong D, Duceppe N, Hoemann CD. Mesenchymal stem cell detachment with trace trypsin is superior to EDTA for in vitro chemotaxis and adhesion assays. Biochem Biophys Res Commun. 2017;484(3):656-661. doi:10.1016/j.bbrc.2017.01.171

Salzig D, Schmiermund A, P. Grace P, Elseberg C, Weber C, Czermak P. Enzymatic Detachment of Therapeutic Mesenchymal Stromal Cells Grown on Glass Carriers in a Bioreactor. Open Biomed Eng J. 2014;7(1):147-158. doi:10.2174/1874120701307010147

Krishnan A, Woodard SL. TrypZean TM : An Animal-Free Alternative to Bovine Trypsin. In: Howard J, Hood E, eds. Commercial Plant-Produced Recombinant Protein Products, Biotechnology in Agriculture and Forestry. 68th ed. Verlag Berlin Heidelberg: Springer; 2014:43-63. doi:10.1007/978-3-662-43836-7

Kaveh K, Ibrahim R, Bakar MZ, Ibrahim T engku A. Mesenchymal Stem Cells, Osteogenic Lineage and Bone Tissue Engineering: A Review. J Anim Vet Adv. 2011;10(17):2317-2330. doi:10.3923/javaa.2011.2317.2330

Rantam F, et al. Stem Cell Exploration Method of Isolation and Culture. 1st Edition. Surabaya: Airlangga University Press; 2009.

Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: Perspectives and future endeavors. Int J Biochem Cell Biol. 2014;46:90-102. doi:10.1016/j.biocel.2013.11.006

Dominici M, Blanc K Le, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells . The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.

Al-Saqi SH, Saliem M, Asikainen S, et al. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells. Cytotherapy. 2014;16(7):915-926. doi:10.1016/j.jcyt.2014.02.006

Pieri L, Urbani S, Mazzanti B, et al. Human mesenchymal stromal cells preserve their stem features better when cultured in the Dulbecco’s modifi ed Eagle medium. Cytotherapy. 2011;13(5):539-548. doi:10.3109/14653249.2010.542459

Vito A Di, Giudice A, Chiarella E, Malara N, Bennardo F, Fortunato L. In Vitro Long-Term Expansion and High Osteogenic Potential of Periodontal Ligament Stem Cells: More Than a Mirage. Cell Transplant. 2019;28(1):129-139. doi:10.1177/0963689718807680

Nazarof I, Lee J, Soupene E, Etemad S, Knapik D, Green W. Multipotent Stromal Stem Cells from Human Placenta Demonstrate High Therapeutic Potential. Stem Cells Transl Med. 2012;1:359-372.

Miersch C, Stange K, Röntgen M. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. Vitr Cell Dev Biol. 2018;54:406-412.

Ferrua C, Centeno E, Rosa L, et al. How has dental pulp stem cells isolation been conducted ? A scoping review. Braz Oral Res. 2017;31:1-9.

Motyan JA, Toth F, Tozser J. Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules. 2013;3:923-942. doi:10.3390/biom3040923

Kurashina Y, Imashiro C, Hirano M, et al. Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves. Commun Biol. 2019;2(393):1-11. doi:10.1038/s42003-019-0638-5

Kobayashi J, Okano T. Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering. Sci Technol Adv Mater. 2010;11(1):1-12. doi:10.1088/1468-6996/11/1/014111

Carvalho PP, Wu X, Yu G, et al. Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy. 2011;13(5):594-597. doi:10.3109/14653249.2010.544721

Carvalho PP, Gimble JM, Dias IR, Gomes ME, Reis RL. Human Adipose-Derived Stromal / Stem Cells : Use of Animal Free Products and Extended Storage At Room Temperature. Stem Cells. 2010:2-3.

Salzig D. Enzymatic Detachment of Therapeutic Mesenchymal Stromal Cells Grown on Glass Carriers in a Bioreactor. Open Biomed Eng J. 2013;7(1):147-158. doi:10.2174/1874120701307010147

Rikno H. Tanaman sebagai bioreaktor protein farmaseutik. BioTrends. 2018;9(1):25-34.

Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E, Beguin Y. Clinical-scale expansion of mesenchymal stromal cells: A large banking experience. J Transl Med. 2016;14(1):1-15. doi:10.1186/s12967-016-0892-y

Manira M, Anuar KK, Seet WT, et al. Comparison of the effects between animal- derived trypsin and recombinant trypsin on human skin cells proliferation, gene and protein expression. Cell Tissue Bank. 2014;15(1):41-49. doi:10.1007/s10561-013-9368-y

Aghayan H, Goodarzi P, Arjmand B. GMP-Compliant Human Adipose Tissue-Derived Mesenchymal Stem Cells for Cellular Therapy. In: Methods in Molecular Biology: Stem Cells and Good Manufacturing Practices. ; 2014:93-107. doi:10.1007/7651

Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M TD. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors : when reaction mechanism is more important than specificity. Cell Death Differ. 2003;10:881-888. doi:10.1038/sj.cdd.4401247

Kaiser O, Aliuos P, Wissel K, et al. Dissociated Neurons and Glial Cells Derived from Rat Inferior Colliculi after Digestion with Papain. PLoS One. 2013;8(12):1-14. doi:10.1371/journal.pone.0080490

Choi K-C, Yoo D-S, Cho K-S, Huh P-W, Kim D-S, Park C-K. Effect of single growth factor and growth factor combinations on differentiation of neural stem cells. J Korean Neurosurg Soc. 2008;44(6):375-381. doi:10.3340/jkns.2008.44.6.375

Lindroos B, Boucher S, Chase L, et al. Serum-free , xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy. 2009;11(7):958-972. doi:10.3109/14653240903233081

Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther. 2010;1(8):1-11. doi:10.1186/scrt8

Kim S, Min W, Chun S, et al. Protein Expression Profiles during Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood Protein Expression Profiles during Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Human Umbilical Cord. Tohoku J Exp Med. 2010;221:141-150. doi:10.1620/tjem.221.141

Suryani D, Pawitan JA, Lilianty J, Purwoko RY, Liem IK, Damayanti L. Comparison of fetal bovine serum and platelet-rich plasma on human lipoaspirate-derived mesenchymal stem cell proliferation. Med J Indones. 2013;22:146-151.

Mothe A, Tator CH. Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord. J Vis Exp. 2015;(99):1-8. doi:10.3791/52732

Zhang N, Chen B, Wang W, et al. Isolation , characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102. doi:10.3892/mmr.2016.5214

Noviantari A, Novianti R, Rinendyaputri R. Comparison of dissociation capability of papain (Carica papaya L .) and trypsin on rat bone marrow mesenchymal stem cells (rBMMSCs) culture (preliminary study ). In: Sujuti H, Khotimah H, Budianto WY, eds. International Conference on Bioinformatics and Nano-Medicine from Natural Resources for Biomedical Research. AIP Publishing; 2019:1-7.


Refbacks

  • There are currently no refbacks.


Sekretariat SENSORIK :

Ruang Jurnal Lantai 2, Gedung Cipto Mangunkusumo, Fakultas Kedokteran, UPN Veteran Jakarta, Indonesia.

Copyright © some right reserved Seminar Nasional Riset Kedokteran (SENSORIK).

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 International License.