SISTEM PREDIKSI ZONA POTENSIAL HIDROKARBON BERDASARKAN DATA WELL-LOG MENGGUNAKAN METODE RANDOM FOREST
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ipek, G., Bassiouni, Z., Kurniawan, B., dan Smith, J.R. 2007. I-B Shaly Sand Model: Application To Hydrocarbon Detection. Jurnal Of Canadian Petroleum Technology 46 (7), hlm. 55-61.
Davies, dan Beynon, P., 2004. "Database Systems Third Edition", Palgrave Macmillan, New York.
Etriyanti, E., Syamsuar, D., dan Kunang, Y.N., 2020. Implementasi Data Mining Menggunakan Algoritme Naïve Bayes Classifier dan C4.5 untuk Memprediksi Kelulusan Mahasiswa. Telematika. 13 (1). hlm. 56-67.
Dwihusna, Nadima, 2020. Seismic And Well Log Based Machine Learning Facies Classification In The Panoma-Hugoton Field, Kansas And Raudhatain Field, North Kuwait. 2020 - Mines Theses & Dissertations.
Agustyaningrum, C., Gata, W., Nurfalah, R., Radiyah, U. dan Maulidah, M., 2020. Komparasi Algoritma Naive Bayes, Random Forest dan SVM Untuk Memprediksi Niat Pembelanja Online. Jurnal Informatika, 20(2), hlm. 164-173.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.