Optimasi Long Short Term Memory Dengan Adam Menggunakan Data Udara Kota DKI Jakarta
Abstract
Keywords
References
Aldi, M. P., Jondri, & Aditsania, A. (2018). Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin. e-Proceeding of Engineering.
Aprianto, Y., Nurhasanah, & Sanubary, I. (2018). Prediksi Kadar Particulate Matter (PM10) untuk Pemantauan Kualitas Udara Menggunakan Jaringan Syaraf Tiruan Studi Kasus Kota Pontianak. POSITRON.
Ba, J. L., & Kingma, D. P. (2015). ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.
Chandra, R., Gupta, R., & Tiwaria, A. (2021). Delhi air quality prediction using LSTM deep learning models with a focus on COVID-19 lockdown. arXiv.
Chandriah, K. K., & Naraganahalli, R. V. (2021). RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting. Springer Nature.
Chang, Z., Zhang, Y., & Chen, W. (2018). Effective Adam-optimized LSTM Neural Network for Electricity Price Forecasting. IEEE, 245.
Elampartihi, P. N., Janarthanan, R., Partheeban, P., & Somasundaram, K. (2021). A deep learning approach for prediction of air quality index in a metropolitan city. ELSEVIER.
Graves, A. (2012). Supervised Sequence Labell with RNN. Springer.
Gul, S., & Khan, G. M. (2020). Forecasting Hazard Level of Air Pollutants Using LSTM’s. Springer Nature Switzerland, 143.
HE, H., & LUO, F. (2020). Study of LSTM Air Quality Index Prediction Based on Forecasting Timeliness. IOP Conference Series: Earth and Environmental Science.
He, J., Jiang, F., & Tian, T. (2019). A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction. Applied Soft Computing Journ.
Jiao1, Y., Wang, Z., & Zhang, Y. (2019). Prediction of Air Quality Index Based on LSTM . Joint International Information Technology and Artificial Intelligence Conference, 8, 17.
Kementerian Lingkungan Hidup. (1997). Standar Keputusan ISPU. MENTERI LINGKUNGAN HIDUP DAN KEHUTANAN REPUBLIK INDONESIA.
Khumadi, A., Raafi'udin, R., & Solihin, I. (2019). Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung. Jurnal Telematika.
Kumari, S., Chaudhry, I., Sharma, S., & Sethi, P. (2019). AQI: PREDICTION AND OPTIMIZATION . TECHNIQUES, 6(6), 675.
Li, H., Wang, J., Li, R., & Lu, H. (2018). Novel analysis–forecast system based on multi-objective optimization for air quality index. ournal of Cleaner Production.
Liang, Y.-C., Maimury, Y., Chen, A. H.-L., & Juarez, J. R. (2020). Machine Learning-Based Prediction of Air Quality. 10.
Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A CNN-LSTM-Based Model to Forecast Stock Prices. Hindawi, 10.
Meliana1, C., Wasono, R., & Haris, M. A. (2020). Perbandingan Metode Long Short Term Memory (LSTM) DAN Genetic Algorithm-Long Short Term Memory (GA-LSTM) Pada Peramalan Polutan Udara.
Mukherjee, P., & Roy, S. (2020). AIR QUALITY INDEX FORECASTING USING HYBRID NEURAL NETWORK MODEL WITH LSTM ON AQI SEQUENCES. Proceedings on Engineering Sciences.
Muslim, B., & Prabowo, K. (2018). Penyehatan Udara. Pusat Pendidikan Sumber Daya Kesehatan.
Oktaviani, A., & Hustinawati. (2019). PREDIKSI RATA-RATA ZAT BERBAHAYA DI DKI JAKARTA BERDASARKAN INDEKS STANDAR PENCEMAR UDARA MENGGUNAKAN METODE LONG SHORT-TERM MEMORY.
R, N., Bhumika, S., R, S., & V, R. (2020). Air Quality Index Prediction using LSTM. International Research Journal of Engineering and Technology (IRJET), 7, 4848.
Saurabh, N. (2020). LSTM -RNN Model to Predict Future Stock Prices using an Efficient Optimizer. International Research Journal of Engineering and Technology (IRJET), 7(11), 672.
Wright, S. J. (2016). optimization.
Xayasouk, T., Lee, H., & Lee, G. (2020). Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models. Sustainability, 12, 1-18.
Xu, Y., Zhang, D., & Zhao, Q. (2019). Prediction of Air Quality Index Based on LSTM Model: A Case Study on Delhi and Houston. Journal of Computer Research and Development.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.