Identifikasi Keganasan Tumor Kulit pada Citra Dermoskopi dengan Metode Support Vector Machine
Abstract
Kanker kulit adalah salah satu kanker yang paling umum ditemukan. Perlu adanya metode diagnosa yang dapat mendiagnosa keganasan tumor kulit dengan cepat. Penelitian ini bertujuan untuk membuat prototipe sistem yang dapat membantu dokter dalam mengklasifikasikan keganasan tumor kulit dari citra dermoskopi dan mengevaluasi kinerja Support Vector Machine dalam mengklasifikasikan citra tersebut. Citra akan diolah melalui praproses, segmentasi, ekstraksi ciri, dan klasifikasi. Praproses pada citra antara lain mengubah resolusi citra, mengubah citra dari channel warna RGB menjadi grayscale dan HSV. Segmentasi dilakukan dengan metode thresholding. Metode ekstraksi ciri yang digunakan dari masing-masing adalah GLCM untuk ciri tekstur dan Color Moments untuk ciri warna. Hasil akurasi terbaik yang didapat pada tahap klasifikasi dan evaluasi dengan K-Fold Cross Validation adalah sebesar 84,8% yang didapatkan dengan model SVM kernel Radial Basis Function dengan parameter cost sebesar 1 dan gamma sebesar 0.125. Nilai akurasi yang didapatkan model dalam mengklasifikasikan citra data testing adalah 76,9%.
Keywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
Copyright (c) 2020 Senamika
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.