Implementasi Penggunaan Algoritma Categorical Boosting (Catboost) Dengan Optimisasi Hiperparameter Dalam Memprediksi Pembatalan Pesanan Kamar Hotel
Abstract
Keywords
References
Chen, C. C., & Xie, K. (2013). Differentiation of cancellation policies in the U.S. hotel industry. International Journal of Hospitality Management, 34(1), 66–72. https://doi.org/10.1016/j.ijhm.2013.02.007
Chen, C. C., Schwartz, Z., & Vargas, P. (2011). The search for the best deal: How hotel cancellation policies affect the search and booking decisions of deal-seeking customers. International Journal of Hospitality Management, 30(1), 129–135. https://doi.org/10.1016/j.ijhm.2010.03.010
Phumchusri, N., & Maneesophon, P. (2014). Optimal overbooking decision for hotel rooms revenue management. Journal of Hospitality and Tourism Technology, 5(3), 261–277. https://doi.org/10.1108/JHTT-03-2014-0006.
Antonio, N., De Almeida, A., & Nunes, L. (2017). Predicting hotel bookings cancellation with a machine learning classification model. Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, 2017-Decem, 1049–1054. https://doi.org/10.1109/ICMLA.2017.00-11
Azhar, Y., Mahesa, G. A., & Mustaqim, M. C. (2021). Prediction of hotel bookings cancellation using hyperparameter optimization on Random Forest algorithm. Jurnal Teknologi Dan Sistem Komputer, 9(1), 15–21. https://doi.org/10.14710/jtsiskom.2020.13790
Haynes, N., & Egan, D. (2020). The perceptions of frontline employees towards hotel overbooking practices: exploring ethical challenges. Journal of Revenue and Pricing Management, 19(2), 119–128. https://doi.org/10.1057/s41272-019-00226-1
Pimentel, V., Eziz, A., & Baker, T. (2021). Patterns in Hotel Revenue Management Forecasting Systems: Improved Sample Sizes, Frozen Intervals, Horizon Lengths, and Accuracy Measures. Mathematics and Computer Science, 6(1), 8. https://doi.org/10.11648/j.mcs.20210601.12
Hurwitz, J., & Kirsch, D. (2018). Machine Learning For Dummies®, IBM Limited Edition Published (C. A. Burchfield (ed.)). John Wiley & Sons, Inc.
Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model. Procedia CIRP, 79, 403–408. https://doi.org/10.1016/j.procir.2019.02.106
Komorowski, M., Marshall, D. C., Salciccioli, J. D., & Crutain, Y. (2016). Secondary Analysis of Electronic Health Records. Secondary Analysis of Electronic Health Records, October, 1–427. https://doi.org/10.1007/978-3-319-43742-2
Hancock, J. T., & Khoshgoftaar, T. M. (2020b). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00369-8
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.