Klasifikasi Tweet Cyberbullying dengan Menggunakan Algoritma Random Forest
Abstract
Keywords
References
R. Bayari and A. Bensefia, “Text mining techniques for cyberbullying detection: State of the art,” Adv. Sci. Technol. Eng. Syst., vol. 6, no. 1, pp. 783–790, 2021, doi: 10.25046/aj060187.
S. C, R. Kumar, S. Parakh, and C. N. . V. Kumar, “Detection of Cyberbullying using Machine Learning,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 1231–1240, 2020, doi: 10.22214/ijraset.2020.30403.
A. Muneer and S. M. Fati, “A comparative analysis of machine learning techniques for cyberbullying detection on twitter,” Futur. Internet, vol. 12, no. 11, pp. 1–21, 2020, doi: 10.3390/fi12110187.
N. L. P. M. S. Putri Waisnawa, D. Nurjanah, and H. Nurrahmi, “Cyberbullying Detection on Twitter using Support Vector Machine Classification Method,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 661–666, 2022, doi: 10.47065/bits.v3i4.1435.
A. Akhter, K. A. Uzzal, and M. M. A. Polash, “Cyber Bullying Detection and Classification using Multinomial Naïve Bayes and Fuzzy Logic,” Int. J. Math. Sci. Comput., vol. 5, no. 4, pp. 1–12, 2019, doi: 10.5815/ijmsc.2019.04.01.
F. Ihsan, I. Iskandar, N. S. Harahap, and S. Agustian, “Decision tree algorithm for multi-label hate speech and abusive language detection in Indonesian Twitter,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, pp. 199–204, 2021, doi: 10.14710/jtsiskom.2021.13907.
N. A. Razmi, M. Z. Zamri, S. S. S. Ghazalli, and N. Seman, “Visualizing stemming techniques on online news articles text analytics,” Bull. Electr. Eng. Informatics, vol. 10, no. 1, pp. 365–365, 2021, doi: 10.11591/eei.v10i1.2504.
D. Farid and N. El-Tazi, “Detection of Cyberbullying in Tweets in Egyptian Dialects,” vol. 18, no. 7, pp. 34–41, 2020, [Online]. Available: https://sites.google.com/site/ijcsis/
A. Karami, M. Lundy, F. Webb, and Y. K. Dwivedi, “Twitter and Research: A Systematic Literature Review through Text Mining,” IEEE Access, vol. 8, pp. 67698–67717, 2020, doi: 10.1109/ACCESS.2020.2983656.
B. Haidar, M. Chamoun, and A. Serhrouchni, “A multilingual system for cyberbullying detection: Arabic content detection using machine learning,” Adv. Sci. Technol. Eng. Syst., vol. 2, no. 6, pp. 275–284, 2017, doi: 10.25046/aj020634.
R. Shah, S. Aparajit, R. Chopdekar, and R. Patil, “Machine Learning based Approach for Detection of Cyberbullying Tweets,” Int. J. Comput. Appl., vol. 175, no. 37, pp. 51–56, 2020, doi: 10.5120/ijca2020920946.
S. Gupta, “Sentiment Analysis: Concept, Analysis and Applications | by Shashank Gupta | Towards Data Science,” 2018. https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17 (accessed Jun. 11, 2022).
F. Y. Pamuji and V. P. Ramadhan, “Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy,” J. Teknol. dan Manaj. Inform., vol. 7, no. 1, pp. 46–50, 2021, doi: 10.26905/jtmi.v7i1.5982.
N. Novalita, A. Herdiani, I. Lukmana, and D. Puspandari, “Cyberbullying identification on twitter using random forest classifier,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012029.
A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
M. A. Al-Garadi et al., “Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms: Review of Literature and Open Challenges,” IEEE Access, vol. 7, pp. 70701–70718, 2019, doi: 10.1109/ACCESS.2019.2918354.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.