Seleksi Fitur Information Gain pada Analisis Sentimen Terhadap Ulasan Aplikasi Flip dengan Algoritma Support Vector Machine
Abstract
Keywords
References
Flip.id, “Transfer Dana Tanpa Biaya.” https://flip.id/ (accessed Oct. 13, 2021).
L. D. Jatmiko, “Flip Klaim Raih 6 Juta Pengguna hingga September 2021,” Sep. 28, 2021. https://teknologi.bisnis.com/read/20210928/266/1448009/flip-klaim-raih-6-juta-pengguna-hingga-september-2021 (accessed Oct. 13, 2021).
V. Ratriani, “Mengenal Flip, aplikasi transfer uang gratis antar bank di Forbes 30 under 30 Asia,” Apr. 26, 2021. https://keuangan.kontan.co.id/news/mengenal-flip-aplikasi-transfer-uang-gratis-antar-bank-di-forbes-30-under-30-asia (accessed Oct. 13, 2021).
S. Watmah, Suryanto, and Martias, “Komparasi Metode K-NN, Support Vector Machine, Dan Random Forest Pada E-Commerce ShopeeKomparasi Metode K-NN, Support Vector Machine, Dan Random Forest Pada E-Commerce Shopee,” Insa. - J. Inov. dan Sains Tek. Elektro, vol. 2, no. 1, pp. 15–21, 2021.
K. A. Rokhman, Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” JOISM J. Inf. Syst. Manag., vol. 2, no. 2, pp. 1–7, 2021.
A. E. Sari, S. Widowati, and K. M. Lhaksmana, “Klasifikasi Ulasan Pengguna Aplikasi Mandiri Online di Google Play Store dengan Menggunakan Metode Information Gain dan Naive Bayes Classifier,” 2019, vol. 6, pp. 9143–9157.
F. A. Nugraha, N. Harani, and R. Habibi, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Bandung: Kreatif Industri Nusantara, 2020. [Online]. Available: https://books.google.co.id/books?id=f738DwAAQBAJ&hl=id&source=gbs_navlinks_s
P. Gupta and N. K. Sehgal, Introduction to Machine Learning in the Cloud with Python: Concepts and Practices. Springer International Publishing, 2021. doi: 10.1007/978-3-030-71270-9.
T. Jo, Text Mining: Concepts, Implementation, and Big Data Challenge. Berlin: Springer International Publishing, 2019. doi: https://doi.org/10.1007/978-3-319-91815-0.
B. Makhabel, P. Mishra, N. Danneman, and R. Heimann, R: Mining Spatial, Text, Web, and Social Media Data. Birmingham: Packt Publishing, 2017. [Online]. Available: https://www.google.co.id/books/edition/R_Mining_spatial_text_web_and_social_med/HHg5DwAAQBAJ?hl=en&gbpv=0
Riyanto and A. Azis, “Application of the Vector Machine Support Method in Twitter Social Media Sentiment Analysis Regarding the Covid-19 Vaccine Issue in Indonesia,” J. Appl. Data Sci., vol. 2, no. 3, pp. 102–108, 2021.
C. Steven and Wella, “The Right Sentiment Analysis Method of Indonesian Tourism in Social Media Twitter Case Study: The City of Bali,” IJNMT (International J. New Media Technol., vol. 7, no. 2, pp. 102–110, 2020, doi: https://doi.org/10.31937/ijnmt.v7i2.1732.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.