Model Klasifikasi Emosi Berdasarkan Suara Manusia dengan Metoode Multilater Perceptron
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
S. Helmiyah, A. Fadlil, and A. Yudhana, “Pengenalan Pola Emosi Manusia Berdasarkan Ucapan Menggunakan Ekstraksi Fitur Mel-Frequency Cepstral Coefficients (MFCC),” CogITo Smart J., vol. 4, no. 2, p. 372, 2019, doi: 10.31154/cogito.v4i2.129.372-381.
A. Yani, “Analisa Kelayakan Kredit Menggunakan Artifcial Neural Network dan Backpropogation (Studi Kasus German Credit Data),” J. Ilm. Komputasi, vol. 18, no. 4, pp. 385–390, 2019, doi: 10.32409/jikstik.18.4.2672.
R. Umar, I. Riadi, and A. Hanif, “Analisis Bentuk Pola Suara Menggunakan Ekstraksi Ciri Mel-Frequencey Cepstral Coefficients (MFCC),” CogITo Smart J., vol. 4, no. 2, p. 294, 2019, doi: 10.31154/cogito.v4i2.130.294-304.
N. Purwaningsih, “Penerapan multilayer perceptron untuk klasifikasi jenis kulit sapi tersamak,” J. TEKNOIF, vol. 4, no. 1, pp. 1–7, 2016.
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Senamika
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.