Penerapan Collaborative Filtering, PCA dan K-Means dalam Pembangunan Sistem Rekomendasi Ongoing dan Upcoming Film Animasi Jepang
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
B. T. W. Utomo and A. W. Anggriawan, “Sistem Rekomendasi Paket Wisata Se-Malang Raya Menggunakan Metode Hybrid Content Based Dan Collaborative,” J. Ilm. Teknol. Inf. Asia, vol. 9, no. 1, pp. 6–13, 2015.
M. Nilashi, K. Bagherifard, O. Ibrahim, H. Alizadeh, L. A. Nojeem, and N. Roozegar, “Collaborative filtering recommender systems,” Res. J. Appl. Sci. Eng. Technol., vol. 5, no. 16, pp. 4168–4182,
F. XUE, X. HE, X. WANG, J. XU, K. LIU, and R. HONG, “Deep item-based collaborative filtering for top-n recommendation,” arXiv, vol. 37, no. 3, 2018.
Z. Tan and L. He, “An Efficient Similarity Measure for User-Based Collaborative Filtering Recommender Systems Inspired by the Physical Resonance Principle,” IEEE Access, vol. 5, pp. 27211–27228, 2017, doi: 10.1109/ACCESS.2017.2778424.
J. Lever, M. Krzywinski, and N. Altman, “Points of Significance: Principal component analysis,” Nat. Methods, vol. 14, no. 7, pp. 641–642, 2017, doi: 10.1038/nmeth.4346.
M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.
R. Lletí, M. C. Ortiz, L. A. Sarabia, and M. S. Sánchez, “Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes,” Anal. Chim. Acta, vol. 515, no. 1, pp. 87–100, 2004, doi: 10.1016/j.aca.2003.12.020.
Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic, “CLiMF,” p. 139, 2012, doi: 10.1145/2365952.2365981.
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Senamika
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.